

Course Specifications

Course Title:	Steel Design
Course Code:	CE 422
Program:	B.Sc. in Civil Engineering
Department:	Civil Engineering
College:	Jubail University College
Institution:	Jubail University College

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: 3	
2. Course type	
a. University College Departm	ent 🗸 Others
b. Required Elective \checkmark	
3. Level/year at which this course is offered:	Level 6, Third Year (Elective)
	Level 7, Fourth Year (Elective)
4. Pre-requisites for this course (if any): CE 309 Structural Analysis I	
5. Co-requisites for this course (if any):	
None	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	\checkmark	100
2	Blended		
3	E-learning		
4	Correspondence		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours	
Contac	Contact Hours		
1	Lecture	30	
2	Laboratory/Studio	45	
3	Tutorial	0	
4	Others (specify)	0	
	Total	75	

B. Course Objectives and Learning Outcomes

1. Course Description

CE 422 Steel Design (2-3-3)

Pre-requisite: CE 309

Properties of structural steel; steel sections and introduction to load resistance factor design (LFRD), design of tension members, compression members and capacity calculations; laced columns width-thickness ratios; design of beams with and without lateral supports; design of members under combined axial and bending loads; design and details of simple bolted and welded connections, and an introduction to common building connections; use of software for design of elements and overall design of frames.

2. Course Main Objective

The main purpose of this course is to prepare students for analysis and design of different steel members (tension, compression and flexural members, bolting, welding, and column/beam base connection) as per the standard code of practice.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
	N/A	
2	Skills	
2.1	Evaluate the capacity of steel members and connections	1
2.2	Design the steel members and connections for a certain load as per the code of practice	2
2.3	Communicate the details of structural design.	3
2.4	Function effectively on a team to achieve the goals of design project	5
3	Values	
	N/A	

C. Course Content

No	List of Topics	Contact Hours
1	 <u>Unit 1. Introduction:</u> 1.1. Introduction: properties of structural steel; 1.2. Steel sections and introduction to load resistance factor design (LFRD); 1.3. Assigning different steel project to each student; 1.4. Comprehensive discussion about the preparation of the project. 	10
2	Unit 2. Tension members:2.1. Evaluation of net area;2.2. Effect of staggered holes on net area;2.3. Strength and design calculation of different steel sections.2.4 Design of tension members;	10
3	Unit 3. Bolted Connections:3.1. Different types of bolted connections;3.2. Various possible failure modes;3.3. Bearing; spacing and edge-distance requirements;3.4. Analysis and Design of bolted connections;	13
4	Unit 4. Beams:4.1. Elastic bending,4.2. Elastic section modulus;4.3. Plastic section modulus;4.4. Lateral stability, compact beams, lateral bracing, and moment4.5. Gradient factor and design of beams.4.6. Analysis and design of beams.	15
5	 <u>Unit 5. Compression members:</u> 5.1. Critical buckling load, Euler buckling formula, and effective slenderness ratio; 5.2. Column design requirements, local and total buckling; 5.3. Capacity calculations; LRFD design of column; 	12

	5.4. Effective length factor-real conditions;	
	5.5. Built-up column section.	
	Unit 6. Welded Connections:	
	6.1. Basic welding process;	
	6.2. Types of welds and welded joints;	
6	6.3. Effective area of groove weld, fillet weld and nominal strength of	
6	welds;	10
	6.4. LRFD-welds;	
	6.5. Capacity of fillet welds, design of groove welds, design of fillet welds;	
	6.6. Balanced welded connection, Eccentric shear welded connection.	
	<u>Unit 7. Beam-column base plate:</u>	
	7.1. Beam-column base plate design;	
	7.2. Study of the following cases:	
7	7.2.1.where no moment—no uplift;	5
	7.2.2.small moment without uplift;	
	7.2.3. maximum moment without uplift;	
	7.2.4. moment with uplift and specification requirements	
	Total	75

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
	N/A		
2.0	Skills		
2.1	Evaluate the capacity of steel members and connections	Interactive learning	Assignments, Written Exams
2.2	Design the steel members and connections for a certain load	Self-directed learning Collaborative learning	(Quiz, Midterm, Final), Project
2.3	Communicate the details of structural design.	Independent Learning Collaborative learning	Project
2.4	Function effectively on a team to achieve the goals of design project	Collaborative learning	Project
3.0	Values		
	N/A		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Quiz 1	4	5%
2	Assignment 1	6	5%
3	Mid-term LT	8	20%
4	Mid-term LB	9	5%
5	Quiz 2	12	5%
6	Assignment 2	14	5%
7	Project	15	5%
8	Performance Lab	15	10%
9	Final Exam LB	16	10%

#	Assessment task*	Week Due	Percentage of Total Assessment Score
10	Final Exam LT	17-19	30%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.) E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Office hours 4 hr/week; students can go in times of office hours for teacher to explain what could not be understood from the lesson.
- Students can communicate with a staff member outside the official working hours by email.
- Students are also encouraged to visit their academic advisors.

F. Learning Resources and Facilities

Required Textbooks	Salmon C. G, Johnson J. E. and Malhas F. A. (2009), Steel Structures- Design and Behavior, USA: Pearson Prentice.
Essential References MaterialsSegui, W. T. (2013), Steel Design, USA: Cengage Learning.McCormac, J. C. (2008), Structural Steel Design, USA: Person	
Electronic Materials	American Institute of Steel Construction: <u>http://www.aisc.org/</u> Steel Construction and design: <u>http://www.steelconstruction.info/Design</u>
Other Learning Materials	STAAD Pro. Software for Structural Analysis and Design The American Institute of Steel Construction (AISC) (2005), Steel Construction Manual, USA: AISC.

1.Learning Resources

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Lecture rooms with a capacity of at least 25 students and fitted with multimedia projector and a computer.	
Technology Resources (AV, data show, Smart Board, software, etc.)	STAAD Pro Software for Structural Analysis and Design	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None	

G. Course Quality Evaluation

Evaluation								
Areas/Issues	Evaluators	Evaluation Methods						
Effectiveness of teaching and assessment as per QMS-Policy-006 Feedback Survey, QMS-QAP-116 Monitoring Students' Satisfaction	Students	Indirect: Analyzing the results of the following surveys Course Evaluation Survey(CES), Program Evaluation Survey (PES), Student Experience Survey (SES)						
Quality of Exam papers and Verifying Standards of Student Achievement as per QMS-Policy- 004 Policy for Examinations and Marking, QMS-ACP-102 Procedure for Marking Examinations	Examination Committee	Direct: Peer review of examination papers and review or double check a minimum of three or 10% of answer papers. Verifying the entries in the Activity Mark Sheet.						
Achievement of learning outcomes as per QMS-Policy-001 Course Review, QMS-CDP-106, QMS-CDP-112 Curriculum Review	Faculty	Direct: Course Report (Section B-3)						
Implementation of the action plans based on previous semester as per QMS-Policy-001 Course Review, QMS-CDP-106 Procedure for Course Review, QMS-CDP-112 Procedure for Curriculum Review	Faculty	Direct and Indirect: Course report (Section G-1, G-2)						
Monitoring Teaching and Learning as per QMS-Policy-005 Monitoring of Teaching and Learning	Chairperson/Program Director/Course Director	Indirect: Feedback by Chairperson/Program director/Course director. Program Delivery Record.						
Effectiveness of planned Teaching Strategies QMS-Policy-001 Course Review	Faculty	Indirect: Course Report (Section B-4)						
Course effectiveness and planning for improvement as per QMS- Policy-001 Course Review, QMS- CDP-106 Procedure for Course Review, QMS- CDP-112 Procedure for Curriculum Review	Faculty	Direct and Indirect: Course report (Section G-3)						
Verifying Standards of Student Achievement and Quality of Exam papers as per QMS-ACP-119 External Assessment Review	Assessment External Reviewer	Direct: Report of assessment external reviewer. Review of sample of ten or 10% of student's assessments and coursework scripts.						

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	ouncil / Committee Civil Engineering Department Council	
Reference No.	REG MIN-CED-10	
Date	27-04-2020	

Appendix A Revision Details

	DESCRIPTION	Reference MoMs			
Revision no.		DC		CDC	
110.		Sem	#	Sem	#
1	Revision of Course Teaching Strategies and action verbs based on the comments of NCAAA reviewer	392	4	392	4
2	Course Specification Template 2018	402			